Nuprl Lemma : mutual-primitive-recursion
11,40
postcript
pdf
A
,
B
:Type,
f0
:
A
,
g0
:
B
,
F
:(
A
B
A
),
G
:(
A
B
B
).
f
:
A
g
:
B
(
f
(0) =
f0
&
g
(0) =
g0
& (
s
:
.
f
(
s
) =
F
(
s
- 1,
f
(
s
- 1),
g
(
s
- 1)) &
g
(
s
) =
G
(
s
- 1,
f
(
s
- 1),
g
(
s
- 1))))
latex
Definitions
f
(
a
)
,
x
:
A
B
(
x
)
,
t
T
,
x
:
A
B
(
x
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
s
=
t
,
False
,
A
,
,
{
x
:
A
|
B
(
x
)}
,
,
b
,
,
P
&
Q
,
P
Q
,
Unit
,
left
+
right
,
x
:
A
.
B
(
x
)
,
,
Type
,
x
(
s1
,
s2
,
s3
)
,
<
a
,
b
>
,
let
x
,
y
=
A
in
B
(
x
;
y
)
,
x
.
A
(
x
)
,
primrec(
n
;
b
;
c
)
,
t
.2
,
t
.1
Lemmas
eqtt
to
assert
,
eqff
to
assert
,
iff
transitivity
,
assert
of
bnot
,
not
functionality
wrt
iff
,
assert
of
eq
int
origin